PKCβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE null mice.
نویسندگان
چکیده
OBJECTIVE Subjects with diabetes mellitus are at high risk for developing atherosclerosis through a variety of mechanisms. Because the metabolism of glucose results in production of activators of protein kinase C (PKC)β, it was logical to investigate the role of PKCβ in modulation of atherosclerosis in diabetes mellitus. APPROACH AND RESULTS ApoE(-/-) and PKCβ(-/-)/ApoE(-/-) mice were rendered diabetic with streptozotocin. Quantification of atherosclerosis, gene expression profiling, or analysis of signaling molecules was performed on aortic sinus or aortas from diabetic mice. Diabetes mellitus-accelerated atherosclerosis increased the level of phosphorylated extracellular signal-regulated kinase 1/2 and Jun-N-terminus kinase mitogen-activated protein kinases and augmented vascular expression of inflammatory mediators, as well as increased monocyte/macrophage infiltration and CD11c(+) cells accumulation in diabetic ApoE(-/-) mice, processes that were diminished in diabetic PKCβ(-/-)/ApoE(-/-) mice. In addition, pharmacological inhibition of PKCβ reduced atherosclerotic lesion size in diabetic ApoE(-/-) mice. In vitro, the inhibitors of PKCβ and extracellular signal-regulated kinase 1/2, as well as small interfering RNA to Egr-1, significantly decreased high-glucose-induced expression of CD11c (integrin, alpha X 9 complement component 3 receptor 4 subunit]), chemokine (C-C motif) ligand 2, and interleukin-1β in U937 macrophages. CONCLUSIONS These data link enhanced activation of PKCβ to accelerated diabetic atherosclerosis via a mechanism that includes modulation of gene transcription and signal transduction in the vascular wall, processes that contribute to acceleration of vascular inflammation and atherosclerosis in diabetes mellitus. Our results uncover a novel role for PKCβ in modulating CD11c expression and inflammatory response of macrophages in the development of diabetic atherosclerosis. These findings support PKCβ activation as a potential therapeutic target for prevention and treatment of diabetic atherosclerosis.
منابع مشابه
Beta3 integrin deficiency promotes atherosclerosis and pulmonary inflammation in high-fat-fed, hyperlipidemic mice.
Hyperlipidemia promotes the chronic inflammatory disease atherosclerosis through poorly understood mechanisms. Atherogenic lipoproteins activate platelets, but it is unknown whether platelets contribute to early inflammatory atherosclerotic lesions. To address the role of platelet aggregation in diet-induced vascular disease, we studied beta3 integrin-deficient mice (lacking platelet integrin a...
متن کاملHuman full-length osteoprotegerin induces the proliferation of rodent vascular smooth muscle cells both in vitro and in vivo.
BACKGROUND/AIMS Since elevated plasma levels of osteoprotegerin (OPG) represent a risk factor for death and heart failure in patients affected by diabetes mellitus and coronary artery disease, this study aimed to elucidate potential roles of OPG in the pathogenesis of atherosclerosis. METHODS AND RESULTS Recombinant human full-length OPG, used at concentrations comparable to the elevated leve...
متن کاملInsulin Resistance Promotes Early Atherosclerosis via Increased Proinflammatory Proteins and Oxidative Stress in Fructose-Fed ApoE-KO Mice
High fructose intake induces an insulin resistance state associated with metabolic syndrome (MS). The effect of vascular inflammation in this model is not completely addressed. The aim of this study was to evaluate vascular remodeling, inflammatory and oxidative stress markers, and atheroma development in high-fructose diet-induced insulin resistance of ApoE-deficient mice (ApoE-KO). Mice were ...
متن کاملAtherosclerosis in C3H/HeJ mice reconstituted with apolipoprotein E-null bone marrow.
Previous studies showed that reconstitution of atherosclerosis-susceptible C57BL/6 (B6) female mice with apolipoprotein E (apoE)-deficient (apoE(-/-)) bone marrow resulted in markedly increased atherosclerosis, despite the fact that plasma lipid levels were unchanged. To determine whether apoE(-/-) bone marrow would increase atherosclerosis in an atherosclerosis-resistant strain, female C3H/HeJ...
متن کاملRapid Communication Bone Marrow–Derived Monocyte Chemoattractant Protein-1 Receptor CCR2 Is Critical in Angiotensin II–Induced Acceleration of Atherosclerosis and Aneurysm Formation in Hypercholesterolemic Mice
Angiotensin II (Ang II) is implicated in atherogenesis by activating inflammatory responses in arterial wall cells. Ang II accelerates the atherosclerotic process in hyperlipidemic apoE / mice by recruiting and activating monocytes. Monocyte chemoattractant protein-1 (MCP-1) controls monocyte-mediated inflammation through its receptor, CCR2. The roles of leukocyte-derived CCR2 in the Ang II-ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 33 8 شماره
صفحات -
تاریخ انتشار 2013